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SUMMARY

A posteriori error estimators are fundamental tools for providing con�dence in the numerical compu-
tation of PDEs. To date, the main theories of a posteriori estimators have been developed largely in
the �nite element framework, for either linear elliptic operators or non-linear PDEs in the absence of
disparate length scales. On the other hand, there is a strong interest in using grid re�nement combined
with Richardson extrapolation to produce CFD solutions with improved accuracy and, therefore, a pos-
teriori error estimates. But in practice, the e�ective order of a numerical method often depends on space
location and is not uniform, rendering the Richardson extrapolation method unreliable. We have recently
introduced (Garbey, 13th International Conference on Domain Decomposition, Barcelona, 2002; 379–
386; Garbey and Shyy, J. Comput. Phys. 2003; 186:1–23) a new method which estimates the order of
convergence of a computation as the solution of a least square minimization problem on the residual.
This method, called least square extrapolation, introduces a framework facilitating multi-level extrap-
olation, improves accuracy and provides a posteriori error estimate. This method can accommodate
di�erent grid arrangements. The goal of this paper is to investigate the power and limits of this method
via incompressible Navier Stokes �ow computations. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: partial di�erential equations; least square method; Richardson extrapolation; a posteriori
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1. INTRODUCTION AND MOTIVATION

Richardson extrapolation (RE) is a simple, elegant and general mathematical idea that works
for numerical quadrature with the Romberg method or ODE integrations that have smooth
enough solution with the Bulirsch-Stoer method. Its use in Computational Fluid Dynamics
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44 M. GARBEY AND W. SHYY

(CFD) [1–9] is limited by the fact that meshes might not be �ne enough to satisfy accurately
the a priori convergence estimates that are only asymptotic in nature. Furthermore the order
of convergence of a CFD code is often space dependent and eventually parameters, such as
the Reynolds number, dependent.
To cope with these limitations of RE, we have introduced recently [10, 11] the so-called

least square extrapolation method (LSE) that is based on the idea of �nding automatically the
order of a method as the solution of a least square minimization problem on the residual.
Our LSE method is based on the post-processing of data produced by existing PDE codes.

The method has been described in detailed in Reference [11]. From a practical point of view,
we have used a two dimensional turning point problem [12] exhibiting a sharp transition layer
as well as a �nite di�erence approximation of the cavity �ow problem in ! −  formula-
tion [13] to show that our method is more reliable than RE while the implementation is still
fairly easy and the numerical procedure inexpensive.
Our objective is to use any PDE or CFD solvers, independent of their inner working

algorithm and procedures, provided that they can o�er the information including the residual
of the numerical approximation, stability estimates, and varying grid resolutions and numerical
solutions, to accomplish the following goals: (i) a posteriori estimates of PDEs that are more
reliable and robust than straightforward Richardson extrapolation-based methods with low
cost in additional CPU time, (ii) a solution with improved accuracy, (iii) arithmetic e�ciency
of the PDE multilevel solution procedure by providing a good starting point for iterative
solvers [14], and (iv) a dynamic solution veri�cation software.
From the applied mathematics point of view, a posteriori estimates have been around for

many years [15, 16]. Most work has been done in the framework of �nite element analysis on
linear elliptic problems in order to drive adaptive mesh re�nement. More recently a general
framework for �nite element a posteriori error control that can be applied to linear and
non-linear elliptic problem has been introduced by Patera et al. [17]. A posteriori �nite-
element free constant output bounds can be constructed for the incompressible Navier Stokes
equation [18]. We propose to use least square extrapolation to produce a posteriori estimate
using grid solutions that can be produced by any discretization. This approach might be
combined to existing a posteriori estimate when they are available, but is still applicable as
a better alternative to straightforward RE when none such stability estimate is available.
The extrapolation procedure is simple to implement and can be incorporated into any com-

puter codes without requiring detailed knowledge of the source code. Its arithmetic cost should
be modest compare to a direct computation of the �ne grid solution. Finally the procedure
should overall enhance the accuracy and trust of a CFD application in the context of solution
veri�cation.
In this paper, we pursue the research initiated in References [10, 11] to investigate the

power and limit of the LSE for the incompressible Navier Stokes equation written in
the u− v−p formulation. This test case has a number of interesting features compared to the
test case in the !−  formulation already studied in Reference [11]. As a matter of fact, the
! −  formulation is essentially a fourth order problem with one unknown, i.e. the stream
function  , while we will see that the LSE method applied to the u − v − p formulation
has to deal with coupled equations, i.e. the momentum equation, and search for an extrapola-
tion solution constrained by the divergence free condition. Further, for problem with multiple
scale, the relation ship between the residual and the numerical error can be fairly complex. In
other words minimizing the residual via LSE does not guarantee that the error is minimized,
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LEAST SQUARE EXTRAPOLATION METHOD 45

unless the space of search is close to the exact solution [19]. We will present in this paper a
postprocessing procedure on our coarse grid solution that makes LSE numerically e�cient.
The plan of this paper is as follows. In Section 2, we �rst summarize basic properties of

RE and summarize the general idea of the LSE method for PDEs. In Section 3 we present in
detail the algorithm for the incompressible Navier Stokes equation. In Section 4, we discuss
the numerical results for the cavity �ow problem. Section 5 is our conclusion and refer to
ongoing research.

2. BASIC PROPERTIES OF RICHARDSON EXTRAPOLATION AND
LEAST SQUARE EXTRAPOLATION

Let E be a normed linear space, ‖ ‖ its norm, v ∈ E, p¿0, and h ∈ (0; h0). ui ∈ E; i=1::3
have the following asymptotic expansion:

ui= v+ C
(

h
2i−1

)p
+ � (1)

with C constant independent of h, and ||�||= o(hp).
For known p, RE formula,

vir =
2p ui+1 − ui

2p − 1 ; i=1; 2 (2)

provides improved convergence: ||v−vir||= o(hp): An a posteriori error estimate on ui is then

||ui − vir|| (3)

In CFD practice, one applies RE to grid functions rather than to continuous functions. Let
Ei be a family of normed linear space, associated with a mesh Mh=2i−1 . We suppose a set of
equations,

Ui= v+ Ci

(
h
2i−1

)p
+ �i (4)

with Ci=(1+ �i)C; and �i= o(1): �i is a model for the h independent numerical perturbation
induced by consistency errors and/or arithmetic error. The Richardson extrapolate

V 2
r =

2p U 3 − U 2

2p − 1 (5)

de�ned on grid points of M2 has then for error in E2,

v − V 2
r =

1
2p − 1

(
(�2 − 2p�3) + C (�2 − �3)

(
h
2

)p)
(6)

The numerical perturbation is ampli�ed by a factor (2p + 1)=(2p − 1): This RE gives then
an a posteriori error estimate on Ui that is simply

||V 2
r − Ui||; i=1::3
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46 M. GARBEY AND W. SHYY

RE can then be used also to approximate a �ner grid solution, for example

U 4 ≈ V 2
r + C

(
h
23

)p
(7)

where C is obtained from the identity

U 3 =V 2
r + C

(
h
22

)p
(8)

For applications in CFD calculation, the asymptotic order of convergence is in general not
known or not closely satis�ed on the computational grid. One may use the estimate:

p ∼ log2
||u1 − u2||
||u2 − u3|| (9)

An entirely similar analysis can be applied to non-embedded re�ned grid solution Ui in
a normed linear space Ei, associated with a mesh Mhi , provided that one projects all grid
functions to a �ne grid M 0 with an interpolation procedure. However this interpolation should
introduce an additional error term integrated in the �i term of (4) kept much less than the
expected convergence accuracy hp

i .
In practice, all pointwise RE extrapolation formulae, particularly (4), are sensitive to nu-

merical perturbation. RE is a common tool for solution quality assessment in CFD. In our
experience [9, 11], we have observed that RE can improve the order of accuracy, but not
consistently. If the quality of the solution is poor then RE may provide worse approxima-
tions. These conclusions are reached based on extensive solution veri�cation with two di�er-
ent Navier Stokes approximations for the steady state, 2-D laminar incompressible lid-driven
square cavity �ow with the Reynolds number (Re) in the range of 20–1000. Squared regu-
lar meshes using the ! −  formulation and �nite di�erence (FD) [13] or the �nite volume
(FV) version of the u − v − p formulation with centred cells [20] have been tested. Fur-
ther experiments with turbulent �ows on a back step has demonstrated the critical issue of
multiscales [9].
In a recent stream of work of Eca et al. see References [2, 21] and its references, one can

use a least square model of the error provided that enough grid solutions are computed. To
be more speci�c most variant of RE suppose that the error is represented by an asymptotic
expansion as follows:

e= v − ui=
∑

k = 1::p
ak�k(h) + o(hp

i ) (10)

in a normed space (Ei; || ||).
In RE procedure, one neglects the o(hp

i ) residual and use the following identity pointwise:

e= v − ui=
∑

k = 1::p
ak�k(h) (11)

We observe that this pointwise equality not only neglects the higher order term o(hp
i ) but also

disregards the nature of the asymptotic expansion that is depending on the norm associated
to Ei:
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LEAST SQUARE EXTRAPOLATION METHOD 47

We have then two standard situations:

• If the basis function � are given, then one need p + 1 grid solutions vj to derive the
unknown coe�cients ak ; k=1::p and the (approximated) true solution v:

• If the set of basis functions �k(h) is a one parameter family of functions, for example
h�
k ; with arbitrary exponent �; one needs 2p+ 1 grid solution to solve the error model,
i.e. compute v; ak ; k=1::p; and �k ; k=1::n; pointwise.

To cope with the fact that RE is very sensitive to noisy data, Eca et al. retrieve the error
model with a least square �t instead of enforcing equalities. This procedure is indeed less
sensitive to noisy data, but requires many more grid solutions than with the standard RE
procedure.
We have developed a completely di�erent technique to optimize RE. Our criterium to select

the best extrapolate solution is to minimize an objective function such as the l2 norm of the
residual for the discrete solution on a very �ne grid. This �ne grid must be chosen to resolve
the �ne scale of the problem. We use no more than two or three coarse grids solution in our
procedure. We do not try to compute directly an approximation of the exact solution either.
We rather try to extract the best information from these two or three coarse grid solutions by
reintroducing in the construction of the extrapolation formula, the discretization of the PDE,
instead of assuming any kind of asymptotic model for the error.
Let us review brie�y the LSE method for the numerical approximation of scalar function

�rst.
Let E=L2(0; 1); u ∈ E: Let v1h and v2h be two approximations of u in E:

v1h; v
2
h → u in E as h → 0:

A consistent linear extrapolation formula writes

�v1h + (1− �)v2h= u:

In RE the � function is a constant. In the LSE method we formulate the following problem
for the unknown function � that is in general a non-constant function.

P�: Find � ∈ �(0; 1) ⊂ L∞ such that (� v1h + (1− �) v2h − u) is minimum in L2(0; 1).
Typically we choose for the space �(0; 1) a set of polynomial trigonometric functions of

degree M , but this is not necessary. We have shown

Theorem (Garbey and Shyy [11])
if u; vih;∈ C1(0; 1); i=1; 2 , if 1=(v1h−v2h) ∈ L∞(0; 1) and v2h−v1h=0(h

p) then �v1h+(1−�)v2h
is an 0(M−2)× 0(hp) approximation of u:

Special care must be done if v1h−v2h � u−v2h, in some set of non-zero measure. These outliers
should not a�ect globally the least square extrapolation and we impose � to be a bounded
function independent of h. A potentially more robust approximation procedure consists of
using three levels of grid solution as follows:

P�;�: Find �; � ∈ �(0; 1) such that (� v1h + � v2h + (1 − � − �) v3h − u) is minimum in
L2(0; 1):
As a matter of fact, all vjh; j=1::3; may coincide at the same grid points only if there is

no grid convergence locally. In such a situation, one cannot expect improved local accuracy
from any extrapolation technique. The robustness of the LSE method comes from the fact that
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48 M. GARBEY AND W. SHYY

the extrapolated solution does not deteriorate the accuracy of the coarse grid solution while
it may not be the case for RE, especially when one uses (9).
In practice, we work with grid functions solution of discretized PDE problem. The idea is

now to use the PDE in the RE process to �nd an improved solution on a given �ne grid M 0:
Let us denote formally the linear PDE

L[u]=f with u ∈ (Ea; || ||a) and f ∈ (Eb; || ||b)
and its numerical approximation,

Lh[U ]=fh with U ∈ (Eh
a ; || ||a) and fh ∈ (Eh

b ; || ||b)
parameterized by a mesh step h.
We suppose that we have a priori a stability estimate for these norms

||U ||a 6 Chs (||fh||b) (12)

with s real not necessarily positive.
Let Gi; i=1::3; be three embedded grids that do not necessarily match, and their corre-

sponding grid solutions Ui: Let M 0 be a regular grid that is �ner than the grids Gi: Let Ũi be
the coarse grid solutions interpolated on the �ne grid M 0:
The main idea of the LSE method is to look for a consistent extrapolation formula based

on the interpolated coarse grid solutions Ũi that minimizes the residual, resulting from Ũi on
a grid M 0 that is �ne enough to capture a good approximation of the continuous solution.
Let us restrict for simplicity to a two-point boundary value problems in (0; 1): Our least

square extrapolation is now de�ned as follows:
P�: Find � ∈ �(0; 1) ⊂ L∞ such that (Lh[�Ũ 1 + (1− �)Ũ 2]− fh) is minimum in L2(M 0):
The three-level version is analogous to the two-level one. To focus on the practical use of

this method, we should make the following observations. It is essential that the interpolation
operator gives a smooth interpolant depending on the order of the di�erential operator and the
regularity of the solution of the di�erential problem. For conservation laws, one may require
that the interpolation operator satis�es the same conservation properties. For reacting �ow
problems, one may require that the interpolant preserves the positivity of species. For elliptic
problems, it is convenient to postprocess the interpolated functions Ũ i, by few steps of the
relaxation scheme

V k+1 − V k

�t
=Lh[V k]− fh; V 0 = Ũ i (13)

with appropriate arti�cial time step �t: This will readily smooth out the interpolant.
Let ej; j=1::m be a set of basis function of �(0; 1): The solution process of P� and/or P(�;�)

can be decomposed into three consecutive steps.

• First, interpolation of the coarse grid solution from Gi; i=1::3 to M 0.
• Second, evaluation of the residual Lh[ej (Ũ i − Ũ i+1)]; j=1::m; and Lh[Ũ 3] on the �ne
grid M 0.

• Third, the solution of the linear least square problem that has m unknowns.

In practice, we keep m low by using a spectral representation of the unknown weight
functions � and eventually �: The arithmetic complexity of the overall procedure is then still
of order Card(M 0), i.e. it is linear. The application to non-linear PDE problem is done via a
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LEAST SQUARE EXTRAPOLATION METHOD 49

Newton-like loop [11]. The algorithm might be coded in a stand alone program independent
of the main code application.
We are going now to describe the algorithm for the incompressible Navier Stokes set of

equations.

3. APPLICATION TO THE CAVITY FLOW PROBLEM

Let us consider the velocity–pressure formulation of the square cavity problem in two space
dimensions. The steady problem writes in �= (0; 1)2,

N1[u; v; p]= − 1
Re
�u+ u

@u
@x
+ v

@u
@y
+

@p
@x
=0; (x; y) ∈ � (14)

N2[u; v; p]= − 1
Re
�v+ u

@v
@x
+ v

@v
@y
+

@p
@y
=0; (x; y) ∈ � (15)

submitted to the constraint

Div(u; v)=
@u
@x

+
@v
@y
=0; (x; y) ∈ � (16)

In this system of equations Re is the Reynolds number. Furthermore this set of equations is
supplemented with the no-slip boundary conditions on the walls of the cavity. The �ow speed
is zero on all walls except on the sliding wall

u(x; 1)= g(x); x∈ (0; 1) (17)

In applying the LSE method with u− v−p formulation, we deal with three new di�culties
that were not present in the Navier Stokes calculation of Reference [11].

• We have a system of coupled non-linear PDEs. The cavity �ow problem with �� for-
mulation is really a fourth order non-linear elliptic problem on � only.

• The LSE on the velocity �eld should satisfy the divergence free constraint.
• Thanks to the discontinuity of the boundary condition on the velocity �eld at the corners,
there is no valid pointwise model of the error that follows a standard Taylor expansion.

The grid functions (ui; vi; pi) on Gi are computed with a standard FD code using a projection
method and staggered grids [13].
Let us consider a set of three-grid solutions (ũi; ṽi; p̃i)i= 1::3 projected onto the �ne grid M 0

via a high order smooth interpolation procedure. Let us denote N 0
1 ; N

0
2 ;Div

0 the corresponding
discretized operator. For �nite di�erences that we will consider from now on, M 0 is a staggered
grid system, and the discretized operator are given by central second order �nite di�erences.
The projected �ow �eld (ũi; ṽi) does not satisfy a priori the divergence-free condition

Div0(ũi; ṽi)=0; (x; y) ∈ � (18)

In the unlikely case where (18) is satis�ed, the extrapolated value of the �ow �eld

�(ũi; ṽi) + (1− �)(ũi; ṽi); i �= j

will not be divergence-free anyway for the Div0 operator, unless � is a constant.
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50 M. GARBEY AND W. SHYY

We de�ne then the following mapping (u; v)→�→(U;V ); where

U =
@�
@y

; V = − @�
@x

; (x; y) ∈ �; and

��=
@u
@y

− @v
@x

; (x; y) ∈ �; �=0 on @�:

We de�ne also its discrete analogue (ũ; ṽ) → (Ũ ; Ṽ ), in M 0:
Thanks to this mapping, we can retrieve from the grid function (ui; vi) in Gi a divergence

free approximation (Ũi; Ṽ i) in M 0: The least square extrapolation problem with two levels
writes then

P�1 ;�2 : Find �1 and �2 ∈ �(�) ⊂ L∞(�) such that

N 0[�1 �̃1 + (1− �1) �̃2; �2p̃1 + (1− �2)p̃2]

is minimum in L2(M 0; M 0); with N 0[�; p]= (N 0
1 [U;V; p]; N 0

2 [U;V; p]).
Since this problem is non-linear, we use a Newton loop to construct a sequence of weight

functions (�n
1; �

n
2) that may converge to the solution. The iterative procedure starts from the

�nest coarse grid solution at our disposal. Convergence is not guaranteed and may depend
on how close the initial guess is to the true M 0 grid solution. If (U 0; V 0; p0) represents the
current solution, the next iterate is found by applying the least square extrapolation procedure
to the linear operator

L0(U 0; V 0)[�; p]= (L01(U
0; V 0)[U;V; p]; L02(U

0; V 0)[U;V; p]) (19)

with

L1(U 0; V 0)[u; v; p] = − 1
Re
�u+U 0 @u

@x
+ u

@U 0

@x
+ V 0 @u

@y
+ v

@U 0

@y

+
@p
@x

− U 0 @U
0

@x
− V 0 @U

0

@y

L2(U 0; V 0)[u; v; p] = − 1
Re
�v+U 0 @v

@x
+ u

@V 0

@x
+ V 0 @v

@y
+ v

@V 0

@y

+
@p
@y

− U 0 @V
0

@x
− V 0 @V

0

@y

A similar algorithm is derived for the three-level case.
The space of unknown weight function is chosen as in Reference [11] to be the set of

trigonometric polynomial functions

�=
∑

i= 1::m; j= 1::m
�i; jei e j

with e1 = 1; e2 = cos(�x) and ei=sin((i − 2)�x); for i=3::m:
This set of trigonometric functions allows us to approximate at second order in L2 norm

any smooth non-periodic functions of C1[(0; 1)2]; [22]. The main advantage of this choice of
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LEAST SQUARE EXTRAPOLATION METHOD 51

approximation space for the weight function is that it will allow us to easily interpret our
numerical result in the frequency space.
However, for Navier Stokes computation with large Reynolds number, we are currently

investigating the use of wavelets since the convergence order might be closely related to the
multiscale properties of the solution.
We are going now to present our numerical experiments with the LSE method.

4. RESULTS AND DISCUSSION

To illustrate the numerical result, we restrict ourselves to the test case of the square cavity
with a constant sliding wall velocity that is g(x)= − 1; and a Reynolds number Re=400:
This test case is representative of the results obtained with our method. In particular, the
�rst component u of the speed is singular at the corner, as well as the pressure. From this
numerical experiment and many others we can draw the following conclusions:
The three-level extrapolation method is more robust and more accurate than the two-level

extrapolation method. Figure 1 illustrates the cancelation phenomenon with two grid solutions
51× 51 and 61× 61: We plot in this picture the local minimum per vertical and/or horizontal
lines of the di�erence between two coarse grid solutions projected on the �ne grid. These
minima are such that any a priori bounded weight coe�cient � will have no in�uence on
the extrapolated solution. The two-level extrapolated solution cannot therefore improve the
accuracy of the solution. Further we cannot decide if the grid solutions are fully converged
at these points or, on the contrary, if the numerical methods lack convergence locally, unless

20 40 60 80 100 120

20

40

60

80

100

120
From pressure on G1 and G2

20 40 60 80 100

20

40

60

80

100

From stream function on G1 and G2

The difference of pressure between
grid solutions G1 and G2 cancels along these curves 

Same phenomenon
for the difference in
stream functions 

Figure 1. Location of some local minima of p̃2 − p̃1 on the left and  ̃ 2 −  ̃ 1 on the right
where cancellation with the two level’s LSE take places.
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52 M. GARBEY AND W. SHYY

we use a very �ne grid solution to compare. We have veri�ed then that the RE formula based
on three-level extrapolated solution with the computed convergence order as in (9) exhibits
large local errors on the convergence order. Following the approach of Reference [1], one
may select adaptively the points where RE has better chances to be valid. We are going to
present the numerical experiments for LSE using three grids only.
In the following we will present a fair comparison between RE and LSE, i.e. we will

compare RE and LSE to predict the same �ne grid solution, instead of using RE to predict
the continuous true solution. In each graph (2)–(6) the horizontal axis indicates the number
of grid points N in each space direction for the �ne grid M 0 used to evaluate the residual.
The vertical axis gives in log10 scale the relative error in L2 norm’s. Labels of curves are
as follows: ‘◦’ for the grid solution G2 solution, ‘v’ for the �nest coarse grid solution G3
solution, 
 for RE, for LSE.
We recall that M 0 is the �ner grid on which the extrapolation is conducted. Let us take

M 0 to be a grid with a slightly smaller space step than G3: RE as well as LSE predicts very
accurately the solution on M 0: In Figure 2, the three coarse grid solutions are 51 × 51 for
G1, 61× 61 for G2, and 71× 71 for G3. We see that as M 0 gets �ner the LSE deteriorates,
while the RE assuming second order improved.
In general LSE seems to be reliable to bounds from below the true error on G3 by comparing

the prediction on M 0 done by LSE and the coarse grid solution G3 interpolated on M 0: This
seems to be a promising tool for routine solution veri�cation. RE gives similar performance
for this speci�c benchmark, and gives much better result than LSE for �ner grid prediction.
We observe a numerical locking of the LSE method to predict solution when the grid M 0

gets signi�cantly �ner than G3: In other words increasing the number of Fourier modes m to
approximate the weight function provides little improvement on the minimum of the residual.
Further, the optimal weight function does not correspond necessarily to the minimum of the
residual. This phenomenon has been clearly demonstrated in Reference [19], where LSE was
restricted to the search for constant � values with two grid levels only. In this speci�c case,
the best weight coe�cient that minimizes the residual in the least square sense, can give
poorer result than the RE method assuming second order of convergence. Figure 3 illustrates
the poor performance of the LSE method with three grid levels and m=4 Fourier modes in
each space direction to approximate the weight function. In this �gure, we have compared the
solution with the 121× 121 grid solution declared as the true solution, while the LSE uses a
�ne grid M 0 with growing size from 81 × 81 to 121 × 121: The three coarse grids solution
are still 51× 51 for G1, 61× 61 for G2, and 71× 71 for G3.
We propose the following explanation of this phenomenon: we observe that the coarse grid

solution interpolated on a �ne grid M 0 has high spurious wave number terms brought by
the interpolation procedure. We know that the high wave number components of the coarse
grid solution relative to the coarse grid itself are inaccurate. The interpolation procedure
combined with the weight function expansion worsen the phenomenon. These high wave
numbers components are ampli�ed in the computation of the residual for a non-linear sti�
problem as the cavity �ow with large Reynolds number. The LSE method minimizes therefore
the L2 norm of a residual polluted by high wave number components. To get the minimum of
this residual does not guarantee therefore that the error on the low wave number component
of the solution is minimum. This phenomenon is not visible when LSE is used to predict
the solution on a near by G3 �ner grid, because the gap in frequency between G3 and M 0 is
small.
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Figure 2. Performance of LSE (without postprocessing of the residual) to predict
the solution on the grid 121 × 121: The coarse grid solution G1; G2; G3; are,

respectively, 51× 51; 61× 61; 71× 71:

To validate our heuristic analysis, we postprocess each coarse grid solution with the NS
code on the �ne grid. We use explicit time stepping with dt constraint by the CFL condition
as well as the explicit treatment of the di�usion term. Ten time steps does not allow the
NS to converge on M 0 by all means, but relax e�ciently the high frequency components
of the projected coarse grids due to the interpolation. We further apply a least square low
mode approximation of the computation of each residual computed in the LSE method. LSE
is therefore now computing the weight functions that minimize the low mode approximation
of the residual. In other words high frequency components are completely �ltered out, and the
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Figure 3. Performance of LSE to predict the M 0 grid solution with the same
notation and computation as in Figure 2.

e�ect of the singularity at the corner in the computation of the residual is somehow weakly
weighted.
The same test case as the one illustrated in Figure 3 has been used. Figure 4 shows that

keeping a 8 Fourier modes in each space direction for the residual approximation, improves
signi�cantly the result. This result is fairly insensitive to the number of NS iterates on the
�ne grid, once the spurious oscillations introduced by the interpolation of the coarse grids
are damped out on M 0. We checked for example that to take 100 NS iterates instead of 10
improve the accuracy of LSE marginally only.
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Figure 4. Performance of LSE to predict the M 0 grid solution with the same notation and
computation as in Figure 2 but with postprocessing of the coarse grid solution and the

residual to �lter out the high waves components.

The same result can be reproduced with higher accuracy for �ner meshes as in Figure 5.
In this last case the declared true solution is for the grid 181 × 181 and the three coarse
grid solutions are 101× 101; 111× 111 and 121× 121 grids. It demonstrates some practical
convergence of the LSE method with very good error estimate on the solution. Further LSE
gives the best performance to predict the grid solution on M 0 when the coarse grid solution
are projected on the same M 0: However, how good should be the coarse grid solution is still
an open issue.
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Figure 5. Performance of LSE, with postprocessing of the residual, to predict
the solution on the grid 181 × 181: The coarse grid solution G1; G2; G3; are,

respectively, 101× 101; 111× 111; 121× 121:

Finally, it should be noticed that as the coarse grid solutions get �ner, the LSE accuracy
is always signi�cantly better than the RE prediction. This is shown in Figure 6 where LSE is
computed with simultaneous increasing resolution of the coarse grid solutions (N − 20)2 for
G1; (N − 10)2 for G2 and N 2 for G3; for N =70 up to 110.
Finally it can be observed on this test case that the �ow speed is discontinuous at the two

corners of the sliding wall. This singular behaviour of the pressure and the velocity components
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Figure 6. Comparison of LSE versus RE with varying accuracy for the coarse grid solution.
G1; G2; G3; are, respectively (N − 20)2; (N − 10)2; N 2 grids. Horizontal axis gives the

number of grid points N in each space direction for G3.

at these corner points leads to locally low order accuracy of the numerical solution [9]. This
impacts the e�ciency of the RE indeed. We obtain then better a posteriori estimate with LSE
than with RE, thanks to the postprocessing of the coarse grid solution.
It is not yet clear if a wavelet representation of the weight function � and �; will better

approximate sharp variation of the convergence order at the corner and give a signi�cantly
better result for the singular case obtain with g(x)= − 1: We have also observed that spline
interpolation of the coarse grid solution on M 0 smears out the singularity at the corner and
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might be also one of the barriers for recovering accurate solution in the L2 norm with very
coarse grids. This is currently the subject of further investigations.

5. CONCLUSIONS

We have studied a new extrapolation method for PDEs that is more robust and accurate than
RE applied to numerical solutions with inexact or varying convergence order. Our method
provides a better tool to establish a posteriori error estimate than RE when the convergence
order of a CFD code is space dependent. However there are still many open questions con-
cerning mainly how �ne should be the coarse grid solution to provide accurate a posteriori
error estimate. We are currently investigating the use of wavelet approximation instead of
regular trigonometric polynomial to track the multiscale properties of the solution re�ected in
sharp variation of the convergence order.
Further let us mention that there are many variants of the least square method [23]. We

have so far considered the most straightforward method with an unreliable estimator. We
may therefore need to �nd an optimal weight to the Least square, and eventually use better
methods such as the generalized least square or non-linear least square method.

ACKNOWLEDGEMENTS

We would like to thank one of the referees for pointing out the fact that one can use RE to estimate a
�ne grid solution. The work of M. Garbey was sponsored by Sandia Nat. Lab. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Depart-
ment of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. Part
of the work of W. Shyy was sponsored by NASA.

REFERENCES

1. De Vahl Davis G. Natural convection of air in a square cavity: a bench mark numerical solution. International
Journal for Numerical Methods in Fluids 1983; 3:249–264.

2. Eca L, Hoekstra M. An evaluation of veri�cation procedures for CFD applications. 24th Symposium on Naval
Hydrodynamics, Fukuoka, Japan, 8–13 July 2002.

3. Hutton AG, Casey MV. Quality and trust in industrial CFD—A European initiative. 39th AIAA Aerospace
Sciences Meeting, 8–11 January 2001, Reno, NV, AIAA Paper 2001-0656.

4. Oberkampf WL, Blottner FG, Aeshliman D. Methodology for computational �uid dynamics code veri�cation and
validation. 26th AIAA Fluid Dynamic Conference, 19–22 June 1995, San Diego, CA, AIAA Paper 95-2226.

5. Oberkampf WL, Trucano TG. Veri�cation and validation in computational �uid dynamics. Sandia Report 2002-
0529, March 2002.

6. Roache PJ. Veri�cation and Validation in Computational Science and Engineering. Hermosa Publishers:
Albuquerque, New Mexico, 1998.

7. Roy CJ, McWherter-Payne MA, Oberkampf WL. Veri�cation and validation for laminar hypersonic �ow�elds.
AIAA2000-2550, Fluids 2000 Conference, Denver, CO, 2000.

8. Roy CJ, Hopkins MM. Discretization error estimates using exact solution to nearby problems. AIAA2003-0629,
Fluids 2003 Conference, Denver, CO, 2003.

9. Shyy W, Garbey M, Appukuttan A, Wu J. Evaluation of Richardson extrapolation in computational �uid
dynamics. Numerical Heat Transfer, Part B: Fundamentals 2002; 41(2):139–164.

10. Garbey M. Some remarks on multilevel method, extrapolation and code veri�cation. In 13th International
Conference on Domain Decomposition DD13, Domain Decomposition Methods in Science and Engineering,
Debit N et al. (eds). CIMNE: Barcelona, 2002; 379–386.

11. Garbey M, Shyy W. A least square extrapolation method for improving solution accuracy of PDE computations.
Journal of Computational Physics 2003; 186:1–23.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:43–59



LEAST SQUARE EXTRAPOLATION METHOD 59

12. O’Malley RJ. Singular Perturbation Methods for ODE. Applied Mathematical Sciences, vol. 89. Springer:
Berlin, 1991.

13. Peyret R, Taylor TT. Computational Methods for Fluid Flow. Springer Series in Computational Physics, 1985.
14. Ecer A, Garbey M, Hervin M. On the design of robust and e�cient algorithms that combine Schwarz method

and multilevel grids. In 12th International Conference on Parallel CFD2000, Jenssen CB et al. (eds). Elsevier:
Amsterdam, 2000; 165–172.

15. Verfurth R. A Review of a Posteriori Estimation and Adaptive Mesh Re�nement Techniques. Wiley-Teubner:
Stuttgart, 1996.

16. Ainsworth M, Oden JT. A Posteriori Error Estimation in Finite Element Analysis. Wiley: New York, 2000.
17. Sarrate J, Peraire J, Patera A. A posteriori �nite element error bounds for nonlinear outputs of the Helmholtz

equation. International Journal for Numerical Methods in Fluids, to appear.
18. Machiels L, Peraire J, Patera AT. A posteriori �nite element output bounds for the incompressible Navier Stokes

equations: application to a natural convection problem. Journal of Computational Physics 2001; 172(2).
19. Vaidyanathan R, Shyy W, Garbey M, Haftka R. CFD code veri�cation using least square extrapolation method.

AIAA, Reno, 2004.
20. Shyy W, Thakur SS, Ouyang H, Liu J, Blosch E. Computational Techniques for Complex Transport

Phenomena. Cambridge University Press: Cambridge, 1997.
21. Eca L, Hoekstra M. Veri�cation procedures for CFD. IST Report D72-14, 2002.
22. Gottlieb D, Shu CW. On the Gibbs phenomenon and its resolution. SIAM Review 1997; 39(4):644–668.
23. Bjorck A. Numerical Method for Least Squares Problems. SIAM: Philadelphia, 1996.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:43–59


